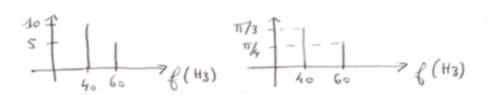
Corrigé DM 1

EXERCICE 1

- 1) a et b sont homogènes
- 2) b car la latitude λ influe; par exemple, si on se trouve au pôle nord, on a $\lambda = \pi/2$ et d=0.
- 3) La Terre effectue 1 tour (2π radians) en 24h, donc $\omega = \frac{2\pi}{24*3600} = 7.3 \cdot 10^{-5} \text{ rad.s}^{-1}$. Pour h=150 m et λ =45°, on calcule d voisin de 2 cm.

EXERCICE 2

1)



2)

$$A(t) = 7$$
. $\frac{1 + \cos 460 \pi t}{2}$
donc $f = 80 \text{ Hz}$ et $\langle A \rangle = 7 \times \frac{1}{2} = 3,5$.

D'après la loi de Malus, I/I₀=cos²(π/3)= ¼=25 %

EXERCICE 3

1) be perticule
$$x(t) = X \cos(\omega_0 t + \varphi)$$
.

6. Let $X = 1.4 \text{ cm}$.

6. Let la periode $T_0 = 3.5 \text{ A}$.

d'où la pulsation $w_0 = \frac{2T}{T_0} = 4.8 \text{ rad } \delta^{-4}$.

et la fréquence $f_0 = \frac{1}{T_0} = 0.3 \text{ Hz}$.

 $w_0 = \sqrt{\frac{9C}{m}} \implies f_0 = mw_0^2 = 0.8 \text{ N, m}^{-4}$.

lanque ∞ est massimal ($\infty = X$), $\infty = 0$ (tangente horizontale) donc $E_C = 0$.

d'où $E_m = 0 + \frac{1}{2} k x^2 = 7.8.10 \text{ J} = 78 \text{ NJ}$.

 E_C est massimale lanque E_C est minimale donc langue $X = 0$.

alon $E_m = \frac{1}{2} m v_{max}^2 + 0$ et $v_{max} = \sqrt{\frac{2E_m}{m}} = 2.5 \text{ cm}^{-4}$.

la vitere massimale est auxil l'amplitude de $v_{\infty}(t)$, soit

 $N_{max} = X w_0 = 2.5 \text{ cm}^{-4}$.

2) At =0, $\times(0) = \times \cos \varphi = -0.6$ cm done $\cos \varphi = -0.43$.

la comainance de cos q me suffit pas car elle aboutit

à $\varphi = 145^{\circ}$ on $\varphi = -145^{\circ}$ soit $\pm 2 \text{ rad}$.

le coefficient directeur de la tangente à l'origine est mégatif. Or $2\epsilon(t) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \sin(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$ et $2\epsilon(0) = -\times \omega_0 \cos(\omega_0 t + \varphi)$

EXERCICE 4

2) D'après le PFD, à l'équilibre à = 0 et
$$\overrightarrow{P} + \overrightarrow{T} = \overrightarrow{0}$$
.

d'où $mg - le (le-lo) = 0$ et $le = lo + \frac{mg}{le}$

2) Le PFD s'écoit maintenant:
$$m\ddot{y} = mg - le (le + y - lo)$$
.

soit $m\ddot{y} = -ley$ ou $\ddot{y} + \frac{le}{m}\dot{y} = 0$.

4)
$$\gamma(0) = \alpha \implies A \times \cos 0 + \beta \sin 0 = \alpha$$

 $\dot{\gamma}(0) = -\sqrt{0} \implies -A \omega_0 \sin 0 + \beta \omega_0 \cos 0 = -\sqrt{0}$
 $\dot{\beta} = -\sqrt{0}$

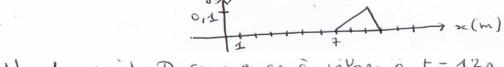
5)
$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}m(-aw_0 sinw_0 t - v_0 sinw_0 t)^2$$

$$Ep = \frac{1}{2} k (l - l_0)^2 + mgh = \frac{1}{2} k (y + l_0 - l_0)^2 - mgy$$

$$= \frac{1}{2} k (a \cos w_0 t + \frac{mg}{k})^2 - mg (a \cos w_0 t - \frac{v_0}{w_0} \sin w_0 t)$$

EXERCICE 5

- a) l'onde est transverale car la vibration verticale est perpendiculaire à la direction horizontale de la propagation.
 - b) l'onde atteint le point Bà 7m en 70 donc c= 1 mot.
 - c) à t = 100, le signal a parconne 3 m supplémentaires :



d) Le point D commence à vibrer à t=120 :

