TD n°6 - Calcul d'intégrales généralisées

Exercice 1. Justifier l'existence des intégrales suivantes, puis calculer leur valeur

1.
$$\int_0^{+\infty} \frac{1}{(t+1)(t+2)} dt$$

4.
$$\int_{0}^{+\infty} e^{-\sqrt{t}} dt$$

7.
$$\int_0^{+\infty} \frac{\arctan(2x) - \arctan(x)}{x} dx$$

2.
$$\int_0^{+\infty} \frac{1}{(e^t + 1)(e^{-t} + 1)} dt$$

5.
$$\int_0^{+\infty} \frac{\ln(t)}{(1+t)^2} dt$$

1.
$$\int_{0}^{+\infty} \frac{1}{(t+1)(t+2)} dt$$
2.
$$\int_{0}^{+\infty} \frac{1}{(e^{t}+1)(e^{-t}+1)} dt$$
3.
$$\int_{0}^{+\infty} \frac{\ln(t)}{(1+t)^{2}} dt$$
4.
$$\int_{0}^{+\infty} \frac{e^{-\sqrt{t}} dt}{t}$$
5.
$$\int_{0}^{+\infty} \frac{\ln(t)}{(1+t)^{2}} dt$$
7.
$$\int_{0}^{+\infty} \frac{\arctan(2x) - \arctan(x)}{x} dt$$
8.
$$I(a) = \int_{0}^{+\infty} \sin(t)e^{-at} dt \text{ pour } a > 0$$
8.
$$I(a) = \int_{0}^{+\infty} \frac{\sin(t)}{a^{2} + t^{2}} dt \text{ pour } a > 0$$
9.
$$I(a) = \int_{0}^{+\infty} \frac{\ln(t)}{a^{2} + t^{2}} dt \text{ pour } a > 0$$

3.
$$\int_0^{+\infty} \ln(1+\frac{1}{t^2}) dt$$

6.
$$\int_0^1 \frac{\ln(t)}{\sqrt{t}} dt$$

9.
$$I(a) = \int_{0}^{+\infty} \frac{\ln(t)}{a^2 + t^2} dt$$
 pour $a > 0$

TD n°6 - Calcul d'intégrales généralisées

Exercice 1. Justifier l'existence des intégrales suivantes, puis calculer leur valeur

1.
$$\int_0^{+\infty} \frac{1}{(t+1)(t+2)} dt$$

4.
$$\int_{0}^{+\infty} e^{-\sqrt{t}} dt$$

7.
$$\int_0^{+\infty} \frac{\arctan(2x) - \arctan(x)}{x} dt$$

2.
$$\int_0^{+\infty} \frac{1}{(e^t + 1)(e^{-t} + 1)} d$$

5.
$$\int_0^{+\infty} \frac{\ln(t)}{(1+t)^2} dt$$

1.
$$\int_{0}^{+\infty} \frac{1}{(t+1)(t+2)} dt$$
 4. $\int_{0}^{+\infty} e^{-\sqrt{t}} dt$ 7. $\int_{0}^{+\infty} \frac{\arctan(2x) - \arctan(x)}{x} dt$ 2. $\int_{0}^{+\infty} \frac{1}{(e^{t}+1)(e^{-t}+1)} dt$ 5. $\int_{0}^{+\infty} \frac{\ln(t)}{(1+t)^{2}} dt$ 8. $I(a) = \int_{0}^{+\infty} \sin(t)e^{-at} dt$ pour $a > 0$

3.
$$\int_0^{+\infty} \ln(1 + \frac{1}{t^2}) dt$$

$$6. \int_0^1 \frac{\ln(t)}{\sqrt{t}} dt$$

6.
$$\int_0^1 \frac{\ln(t)}{\sqrt{t}} dt$$
 9. $I(a) = \int_0^{+\infty} \frac{\ln(t)}{a^2 + t^2} dt$ pour $a > 0$

TD n°6 - Calcul d'intégrales généralisées

Exercice 1. Justifier l'existence des intégrales suivantes, puis calculer leur valeur

1.
$$\int_0^{+\infty} \frac{1}{(t+1)(t+2)} dt$$

$$4. \int_0^{+\infty} e^{-\sqrt{t}} dt$$

7.
$$\int_0^{+\infty} \frac{\arctan(2x) - \arctan(x)}{x} dx$$

2.
$$\int_0^{+\infty} \frac{1}{(e^t + 1)(e^{-t} + 1)} dt$$

5.
$$\int_0^{+\infty} \frac{\ln(t)}{(1+t)^2} dt$$

1.
$$\int_{0}^{+\infty} \frac{1}{(t+1)(t+2)} dt$$
2.
$$\int_{0}^{+\infty} \frac{1}{(e^{t}+1)(e^{-t}+1)} dt$$
3.
$$\int_{0}^{+\infty} \frac{\ln(t)}{\sqrt{t}} dt$$
4.
$$\int_{0}^{+\infty} e^{-\sqrt{t}} dt$$
5.
$$\int_{0}^{+\infty} \frac{\ln(t)}{(1+t)^{2}} dt$$
7.
$$\int_{0}^{+\infty} \frac{\arctan(2x) - \arctan(x)}{x} dt$$
8.
$$I(a) = \int_{0}^{+\infty} \sin(t)e^{-at} dt \text{ pour } a > 0$$
9.
$$I(a) = \int_{0}^{+\infty} \frac{\ln(t)}{a^{2}+t^{2}} dt \text{ pour } a > 0$$

3.
$$\int_0^{+\infty} \ln(1 + \frac{1}{t^2}) dt$$

$$6. \int_0^1 \frac{\ln(t)}{\sqrt{t}} dt$$

9.
$$I(a) = \int_0^{+\infty} \frac{\ln(t)}{a^2 + t^2} dt$$
 pour $a > 0$

TD n°6 - Calcul d'intégrales généralisées

Exercice 1. Justifier l'existence des intégrales suivantes, puis calculer leur valeur

1.
$$\int_0^{+\infty} \frac{1}{(t+1)(t+2)} dt$$

4.
$$\int_0^{+\infty} e^{-\sqrt{t}} dt$$

7.
$$\int_0^{+\infty} \frac{\arctan(2x) - \arctan(x)}{x} dt$$

2.
$$\int_0^{+\infty} \frac{1}{(e^t + 1)(e^{-t} + 1)} dt$$

5.
$$\int_0^{+\infty} \frac{\ln(t)}{(1+t)^2} dt$$

1.
$$\int_{0}^{+\infty} \frac{1}{(t+1)(t+2)} dt$$
 4. $\int_{0}^{+\infty} e^{-\sqrt{t}} dt$ 7. $\int_{0}^{+\infty} \frac{\arctan(2x) - \arctan(x)}{x} dt$ 2. $\int_{0}^{+\infty} \frac{1}{(e^{t}+1)(e^{-t}+1)} dt$ 5. $\int_{0}^{+\infty} \frac{\ln(t)}{(1+t)^{2}} dt$ 8. $I(a) = \int_{0}^{+\infty} \sin(t)e^{-at} dt$ pour $a > 0$

3.
$$\int_0^{+\infty} \ln(1 + \frac{1}{t^2}) dt$$

$$6. \int_0^1 \frac{\ln(t)}{\sqrt{t}} dt$$

3.
$$\int_{0}^{+\infty} \ln(1 + \frac{1}{t^2}) dt$$
 6.
$$\int_{0}^{1} \frac{\ln(t)}{\sqrt{t}} dt$$
 9.
$$I(a) = \int_{0}^{+\infty} \frac{\ln(t)}{a^2 + t^2} dt \text{ pour } a > 0$$