Exercice 1. Soit H un sous-espace vectoriel de E.

(*) Montrer que H est un hyperplan de E ssi $\exists x_0 \in E$ non nul tel que $E = H \oplus Vect(x_0)$.

Exercice 2. [PT 2009] Soit E un \mathbb{R} -espace vectoriel de dimension 2, et $\mathcal{B} = (e_1, e_2)$ une base de E fixée. On considère l'application linéaire f ayant pour matrice, dans la base \mathcal{B} , $M = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$

- 1. (*) Montrer que f est un projecteur. Quel est son rang?
- 2. (*) Déterminer le noyau et l'image de f.

Exercice 3. (*)

Soit $(a,b) \in \mathbb{R}^2$ avec $a \neq b$. Pour $n \in \mathbb{N}$, $n \geq 2$, on note B_n le déterminant suivant

$$B_{n} = \begin{vmatrix} a+b & a & & 0 \\ b & \ddots & \ddots & \\ & \ddots & \ddots & a \\ 0 & & b & a+b \end{vmatrix}_{[n]}$$

Montrer que $\forall n \in \mathbb{N}, n \geq 4, \ B_n = (a+b)B_{n-1} - abB_{n-2}$, puis en déduire que

$$\forall n \in \mathbb{N}, n \ge 2, \ B_n = \frac{a^{n+1} - b^{n+1}}{a - b}.$$

Exercice 4. (\star) [CCP PSI 2010 et 2013] Soit $P_n = X^n - X + 1$, avec $n \ge 2$.

- 1. Montrer que P_n possède n racines z_1, \ldots, z_n distinctes dans \mathbb{C} .
- 2. Calculer $\sigma_n = \prod_{j=1}^n z_j$ et $\sigma_{n-1} = \sum_{j=1}^n \prod_{i \neq j} z_i$.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{C})$, avec $\begin{cases} a_{ii} = 1 + z_i \\ a_{ij} = 1 \text{ si } i \neq j \end{cases}$ Calculer $\det(A)$.

Exercice 5. On considère l'application f de \mathbb{R}^3 dans lui même, qui au vecteur (x, y, z) associe le vecteur (x - y, -x + z, 3x - 2y - z).

- 1. (*) Montrer que f est un endomorphisme de \mathbb{R}^3 , et donner sa matrice dans la base canonique de \mathbb{R}^3 .
- 2. (*) Par la formule du changement de base, donner la matrice de f dans la base $\mathscr{B}' = ((1,0,0),(1,1,0),(1,1,1)).$
- 3. (*) Déterminer le noyau et l'image de f. Donner une équation de cette image.
- 4. Calculer la matrice de f^2 . Puis sans calcul donner une base de $Im(f^2)$ et les puissances de f.

Exercice 6. (*) Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$.

1. Montrer que, si u(x) est colinéaire à x pour tout x de E, alors u est de la forme $\lambda . Id_E$. On pourra montrer, dans le cas où (x,y) est libre, que si $u(x) = \alpha x$ et $u(y) = \beta y$ alors $\alpha = \beta$ en raisonnant sur le vecteur x + y.

- 2. Montrer que si u commute avec tous les endomorphismes de E, alors u est une homothétie. Si x est un vecteur non nul de E, on pourra considérer un projecteur sur Vect(x).
- 3. Déterminer les matrices $M \in \mathcal{M}_n(\mathbb{K})$ qui commutent avec toutes les matrices inversibles : ie, telles que $\forall G \in GL_n(\mathbb{K}), MG = GM$.

Exercice 7. Soient E, F deux K-espaces vectoriels, $f \in \mathcal{L}(E, F)$ et A, B deux sous-espaces de E. Montrer que :

$$f(A) \subset f(B) \iff A + \ker f \subset B + \ker f$$

Exercice 8.

On souhaite calculer les puissances de la matrice $M = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$.

(*) Montrer que $\forall k \in \mathbb{N}^*$, on peut écrire $M^k = \begin{pmatrix} u_k & u_k & v_k & u_k & u_k \\ u_k & u_k & v_k & u_k & u_k \\ v_k & v_k & w_k & v_k & v_k \\ u_k & u_k & v_k & u_k & u_k \\ u_k & u_k & v_k & u_k & u_k \end{pmatrix}$. Conclure.

Exercice 9. Soit $A \in \mathcal{M}_3(\mathbb{R})$, $A \neq 0_3$, vérifiant $A^3 = -A$. On note f son endomorphisme canoniquement associé.

- 1. Montrer que le déterminant de f est nul.
- 2. Prouver la décomposition en somme directe $\mathbb{R}^3 = \ker(f) \oplus \ker(f^2 + Id_{\mathbb{R}^3})$. On pourra écrire $x = (f^{2}(x) + x) + (-f^{2}(x))$.
- 3. Montrer que $\ker(f^2 + Id_{\mathbb{R}^3}) \neq \{0\}$ et que si $y \in \ker(f^2 + Id_{\mathbb{R}^3})$ non nul, alors (y, f(y)) est libre.
- 4. En déduire que A est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

Exercice 10. (*) On définit les trois sous-espaces suivants de $E = \mathbb{K}_3[X]$

$$F = \{P \in E, P(0) = P(1) = P(2) = 0\}$$

$$G = \{ P \in E, P(1) = P(2) = P(3) = 0 \}$$

$$H = \{ P \in E, P(X) = P(-X) \}.$$

Caractériser $F \oplus G$ et montrer $E = F \oplus G \oplus H$.

Exercice 11. On considère $E = \{ f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}); f^{(5)} = f^{(3)} \}$ ainsi que

$$F = \{f: x \mapsto ax + b; (a,b) \in \mathbb{R}^2\} \quad , \quad G = \{f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}); f^{(2)} = f\} \quad , \quad H = \{x \mapsto cx^2; c \in \mathbb{R}\}$$

- 1. Montrer que E, F, G, H sont des sous espaces-vectoriels de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.
- 2. Montrer que $F \oplus G \oplus H = E$.
- 3. Déterminer une base de E adaptée à cette décomposition.

Exercice 12. (\star) Pour $a \in \mathbb{R}$, on note $f_a : x \mapsto |x-a|$. Montrer que la famille $(f_a)_{a \in \mathbb{R}}$ est libre. On procédera par l'absurde en prenant une sous-famille liée et en s'intéressant à la dérivabilité d'une combinaion linéaire.

Exercice 13. (\star)

On note E l'ensemble des $(u_n) \in \mathbb{R}^{\mathbb{N}}$ telles que $\forall n \in \mathbb{N}, u_{n+3} = u_{n+2} + u_{n+1} + 2u_n$, F l'ensemble des $(a_n) \in \mathbb{R}^{\mathbb{N}}$ telles que $\forall n \in \mathbb{N}, a_{n+1} = 2a_n$ et G l'ensemble des $(b_n) \in \mathbb{R}^{\mathbb{N}}$ telles que $\forall n \in \mathbb{N}, b_{n+2} = -b_{n+1} - b_n$.

- 1. Vérifier que E, F et G sont des \mathbb{R} -espaces vectoriels.
- 2. Déterminer une base et la dimension de F et de G.
- 3. On admet que dim(E) = 3. En déduire que $E = F \oplus G$. Donner alors une base de E.
- 4. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1, u_1=0, u_2=2$ et $\forall n\in\mathbb{N}, u_{n+3}=u_{n+2}+u_{n+1}+2u_n$. Déterminer l'expression de u_n en fonction de n.

Exercice 14. Soit $A, B \in \mathcal{M}_n(\mathbb{K})$.

À quelle condition la matrice $M = \begin{pmatrix} A+B & A-B \\ A-B & A+B \end{pmatrix}$ est-elle inversible?

Exercice 15. Soit $H \in \mathcal{M}_n(\mathbb{C})$ une matrice de rang 1.

- a) Montrer qu'il existe des matrices $U, V \in \mathcal{M}_{n,1}(\mathbb{K})$ telles que $H = U^t V$.
- b) En déduire $H^2 = \operatorname{tr}(H)H$
- c) On suppose $\operatorname{tr} H \neq -1$. Montrer que $I_n + H$ est inversible et que $(I_n + H)^{-1} = I_n \frac{1}{1 + \operatorname{tr} H} H$
- d) Soient $A \in GL_n(\mathbb{K})$ telle que $tr(HA^{-1}) \neq -1$. Montrer que A + H est inversible et que

$$(A+H)^{-1} = A^{-1} - \frac{1}{1 + \operatorname{tr}(HA^{-1})} A^{-1} H A^{-1}$$

Exercice 16. (*) Dans \mathbb{R}^3 , on considère le plan H d'équation cartésienne x+y+z=0 et la droite D=Vect(1,1,1).

- 1. Montrer que H et D sont supplémentaires et construire une base \mathscr{B} adaptée à $H \oplus D = \mathbb{R}^3$.
- 2. Justifier l'existence d'un unique endomorphisme u de \mathbb{R}^3 vérifiant les propriétés suivantes :
 - $-- \ \forall x \in \mathbb{R}, \ u(x,x,x) = (2x,2x,2x)$
 - $\forall (x,y) \in \mathbb{R}^2, \ u(x,y,-x-y) = (-y,x,y-x)$

puis calculer la matrice M de u dans la base ${\mathscr B}$ construite plus haut.

3. D et/ou H sont-ils stables par u?

Exercice 17. (*) Calculer le déterminant et la trace de $u \in \mathcal{L}(\mathcal{M}_n(\mathbb{K}))$ défini par $u(M) = M^T$.

Exercice 18. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Montrer l'équivalence :

 $Tr(M) = 0 \Leftrightarrow M$ est semblable à une matrice dont tous les éléments diagonaux sont nuls. On pourra procéder par récurrence sur la dimension n.

Exercice 19. [Ecole navale] Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$.

On définit par blocs les matrices $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ et $J = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}$. On suppose en outre que ${}^tMJM = J$. Montrer que A et D sont inversibles.

Exercice 20. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $B = \begin{pmatrix} A & A^2 \\ 0_n & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$. Pour $P \in \mathbb{R}[X]$, écrire P(B) par blocs à l'aide de P(A) et P'(A).

Exercice 21 (Décomposition en endomorphismes cycliques). Soit E de dimension finie. On dit qu'un endomorphisme u de E est cyclique lorsqu'il existe une base de E de la forme $(x, u(x), ..., u^{n-1}(x))$.

- 1. Donner la forme de la matrice d'un tel endomorphisme cyclique dans une base telle que ci-dessus.
- 2. On revient au cas général (u n'est pas supposé cyclique). Montrer que :
 - (a) si x est non nul, alors il existe $p \in \mathbb{N}^*$ tel que $(x, u(x), ..., u^{p-1}(x))$ est libre et $(x, u(x), ..., u^p(x))$ est liée.
 - (b) $F = Vect((x, u(x), ..., u^{p-1}(x)))$ est stable par u.
- 3. Admettons que E se décompose en sous-espaces supplémentaires $F_1, ..., F_p$ stables par u et tels que les endomorphismes u_i induits par u sur F_i soient cyclique. Quelle est la forme de la matrice de u dans une base adaptée à une telle décomposition?

Remarque:

Une telle décomposition, dite de Frobenius, existe toujours, mais c'est un résultat difficile à obtenir (cf Les Maths en Tête de X. Gourdon par exemple).

Exercice 22. (*) Le plan est rapporté à un repère orthonormé (O, i, j) et on considère n points $A_1, A_2, A_3, ..., A_n$ d'affixes respectives $a_1, a_2, a_3, ..., a_n$.

Dans le cas n pair, existe-t-il un polygone $M_1, M_2, M_3, ..., M_n$ tel que : A_1 soit le milieu de $(M_1, M_2), A_2$ soit le milieu de $(M_2, M_3), ..., A_{n-1}$ soit le milieu de (M_{n-1}, M_n) , et A_n le milieu de (M_n, M_1) ?