PHYSIQUE

CARNET DE BORD

Utilisation de ce document

Ce document est une aide aux révisions : il permet de dégager les points les plus importants du cours et des séances d'exercices.

Vous devriez avoir ce document avec vous toute l'année, et il doit vous servir de référence pour savoir quoi réviser en priorité pour chaque chapitre.

- **Niveau 1** Il s'agit des points les plus fondamentaux à maîtriser, ne demandant généralement pas de grandes compétences techniques.
- **Niveau 2** Les compétences décrites ici sont généralement un peu plus techniques, mais doivent être maitrisées par un étudiant de niveau moyen. C'est aussi ici que se trouvent les démonstrations de cours les plus classiques.
- **Niveau 3** Il s'agit des points à travailler une fois que vous êtes à l'aise sur le chapitre en question, et que les deux niveaux précédents sont parfaitement maîtrisés. Ces compétences sont généralement utiles pour traiter les questions les plus difficiles des sujets d'écrit de type concours. Ce niveau est à destination des meilleurs étudiants.

Vous pouvez cocher les cases à disposition au fur et à mesure que vous acquerrez les compétences correspondantes.

Il ne faut s'attarder sur des compétences de niveau supérieur uniquement une fois que les niveaux inférieurs sont complètement maitrisés.

Conseils généraux pour votre travail personnel

Votre priorité doit être de profiter au maximum du temps passé en classe avec l'enseignant, et d'optimiser l'apprentissage du cours et des exercices. Voici quelques conseils permettant de réaliser cet objectif :

- Après une séance de cours magistral (en classe entière), il faut relire le cours le plus tôt possible, typiquement le soir même. Ainsi, si des questions émergent, le cours sera encore frais et vous pourrez rajouter quelques notes pour préciser ces points de cours, ou bien poser des questions à l'enseignant en début de séance suivante.
- Avant une séance de travaux dirigés, il est important de relire, même rapidement, le cours correspondant, afin d'optimiser la séance et de savoir de quoi on parle en entamant la résolution des exercices.
- Pendant une séance de TD, il faut être le plus actif possible, et ne pas attendre ni la correction de l'exercice au tableau, ni les camarades de classe pour en faire le plus possible.
- Après une séance de TD, et notamment en vue des révisions pour les DS, il ne faut pas se contenter de relire les exercices, mais plutôt de refaire soi-même les exercices, quitte à y passer plus de temps et à se concentrer sur certains exercices (correspondants au « niveau 1 », puis au « niveau 2 »).
- Dès qu'un DM est distribué, il faut commencer à travailler dessus, seul ou à plusieurs, afin de faire émerger des questions et d'avoir le temps de les poser à l'enseignant. Le plus important est d'être dans une démarche de recherche et de questionnement, bien plus que le résultat final.
- Si vous faites des fiches de révision, elles doivent être le plus synthétiques possible, pensez bien qu'au moment des révisions des écrits, vous aurez tout le programme de l'année dans chaque matière à réviser.

Partie A – Mécanique

Chapitre 1 - Observation du mouvement

	(Niveau 1)
	Savoir que la vitesse est la dérivée de la position
	Savoir que l'accélération est la dérivée de la vitesse
	Savoir définir un référentiel galiléen
	Exercices 1, 2, 3, 6, 11
	Niveau 2
	Savoir intégrer une accélération constante pour obtenir une vitesse
	Savoir intégrer de nouveau pour obtenir l'expression de la position
	Utiliser les conditions initiales pour déterminer les constantes d'intégration
	Savoir quand on peut considérer une masse comme un point matériel
	Exercices 4, 5, 7, 12
	Niveau 3
	Connaître plusieurs référentiels classiques
	Savoir appliquer le principe d'inertie dans un référentiel galiléen
	Exercice 13
	Chapitre 2 – Interactions conservatives
	Niveau 1
	Expression (et <i>signe</i>) de l'énergie potentielle de pesanteur
	Expression de l'énergie potentielle élastique associée à un ressort en fonction de ℓ et ℓ_0 , ou en fonction de X
	Savoir interpréter un graphe d'énergie potentielle : positions d'équilibre, stabilité
	Exercices 1 et 3
	Niveau 2
	Savoir écrire l'énergie potentielle de pesanteur le long d'une pente d'angle α
	Savoir trouver de manière analytique les positions d'équilibre pour une énergie potentielle donnée
	Distinguer interaction conservative et interaction non conservative
	Exercices 2, 5 et 6
	Niveau 3
	Savoir déterminer de manière analytique la stabilité des positions d'équilibre
	Exercices 4 et 7

Chapitre 3 – Conservation de l'énergie

	Niveau 1
	Connaître l'expression de l'énergie cinétique d'un point matériel
	Savoir que l'énergie mécanique est <i>définie</i> comme la somme de l'énergie cinétique et des énergies potentielles
	Savoir qu'en l'absence d'interactions non conservatives, l'énergie mécanique se conserve (théorème de l'énergie mécanique)
	Savoir appliquer le théorème de l'énergie mécanique dans des cas simples entre un état initial et un état final qui seront définis avec soin, pour déterminer une vitesse ou une position
	Exercices 1 et 2, question 3.1.
	Niveau 2
	Énoncer le théorème de la puissance mécanique, liant la dérivée de l'énergie mécanique à la puissance des forces non conservatives
	Savoir appliquer le théorème de l'énergie mécanique pour obtenir une équation différentielle du premier ordre (cas de la chute avec frottements fluides)
	Exercices 3, 5, 6
	Niveau 3
	Énoncer le théorème de l'énergie mécanique dans le cas général, reliant variation d'énergie mécanique et travail des forces non conservatives
	Déduire d'un graphe d'énergie potentielle ou d'une expression d'une énergie mécanique une vitesse ou une position en des points particuliers
	Déduire d'un graphe d'énergie potentielle le comportement borné ou non d'une trajectoire
	Exercices 4 et 7
	Point « Maths » – Équation différentielle du premier ordre
	Niveau 1
	Connaître la forme canonique d'une équation différentielle du premier ordre sans second
	membre: $\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{1}{\tau}v = 0$
	Savoir que τ est exprimé en secondes et correspond au temps caractéristique d'évolution du système.
	Savoir que la solution d'une telle équation différentielle est sous la forme $v(t) = Ae^{-\frac{t}{\tau}}$, avec A une constante à déterminer grâce aux conditions initiales.
	Savoir qu'en cas d'équation avec second membre, la solution particulière de cette équation s'obtient en régime permanent.
	Niveau 2
	Savoir déterminer la solution particulière de l'équation avec second membre en régime permanent.
	Savoir déterminer la constante d'intégration à partir de la condition initiale du système.
	Être capable de tracer le graphique représentant la solution en fonction du temps.

Chapitre 4 – Oscillateurs

Niveau	1	

		Savoir que $\dot{x} = \frac{dx}{dt} = v$ et que $\ddot{x} = \frac{d^2x}{dt^2} = \dot{v} = a$
		Savoir qu'un système masse-ressort a un comportement oscillatoire sous une forme sinu- soïdale, et que cela s'appelle un oscillateur harmonique
		Savoir qu'un pendule simple a un comportement d'oscillateur harmonique dans l'approximation des petits angles
		Reconnaître un oscillateur harmonique d'un oscillateur avec frottements à partir de l'équation différentielle (présence d'un terme de premier ordre ou non)
		Connaître les noms des différents régimes : pseudo-périodique, apériodique, critique, et différencier sur un graphique le cas du régime pseudo-périodique des deux autres
		Obtenir l'équation différentielle d'un oscillateur harmonique grâce au PFD
		Exercices 3 et 4
		Niveau 2
		Obtenir l'équation différentielle d'un oscillateur harmonique et d'un oscillateur avec frottements grâce au théorème de l'énergie mécanique (système masse-ressort et pendule)
		Résoudre entièrement le cas d'un oscillateur harmonique
		Résoudre le cas d'un oscillateur avec frottements dans l'hypothèse de frottement faible
		Exercices 1, 2, 5 et 6
		Niveau 3
		Résoudre le cas d'un oscillateur amorti dans le cas général, être à l'aise avec le facteur d'amortissement comme avec le facteur de qualité.
		tissement comme avec le facteur de quanter
	P	oint « Maths » – Équation différentielle d'un oscillateur harmonique
	P	
		oint « Maths » – Équation différentielle d'un oscillateur harmonique
		Point « Maths » – Équation différentielle d'un oscillateur harmonique Niveau 1 Connaître la forme canonique d'une équation différentielle du second ordre sans second
		Niveau 1 Connaître la forme canonique d'une équation différentielle du second ordre sans second membre : $\ddot{x} + \omega_0^2 x = 0$, avec ω_0 appelée pulsation propre du système et s'exprimant en s ⁻¹ . Savoir que la solution de cette équation est $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$, avec A et B des
		Niveau 1 Connaître la forme canonique d'une équation différentielle du second ordre sans second membre : $\ddot{x} + \omega_0^2 x = 0$, avec ω_0 appelée pulsation propre du système et s'exprimant en s ⁻¹ . Savoir que la solution de cette équation est $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$, avec A et B des constantes à déterminer grâce aux conditions initiales. Niveau 2 Connaître la forme canonique avec second membre et s'en servir pour obtenir facilement la
		Niveau 1 Connaître la forme canonique d'une équation différentielle du second ordre sans second membre : $\ddot{x} + \omega_0^2 x = 0$, avec ω_0 appelée pulsation propre du système et s'exprimant en s ⁻¹ . Savoir que la solution de cette équation est $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$, avec A et B des constantes à déterminer grâce aux conditions initiales. Niveau 2
		Point « Maths » – Équation différentielle d'un oscillateur harmonique Niveau 1 Connaître la forme canonique d'une équation différentielle du second ordre sans second membre : $\ddot{x} + \omega_0^2 x = 0$, avec ω_0 appelée pulsation propre du système et s'exprimant en s ⁻¹ . Savoir que la solution de cette équation est $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$, avec A et B des constantes à déterminer grâce aux conditions initiales. Niveau 2 Connaître la forme canonique avec second membre et s'en servir pour obtenir facilement la position d'équilibre : $\ddot{x} + \omega_0^2 x = \omega_0^2 x_{\rm eq}$ Savoir déterminer les constantes d'intégration à partir des conditions initiales sur la vitesse
		Point « Maths » — Équation différentielle d'un oscillateur harmonique Niveau 1 Connaître la forme canonique d'une équation différentielle du second ordre sans second membre : $\ddot{x} + \omega_0^2 x = 0$, avec ω_0 appelée pulsation propre du système et s'exprimant en s ⁻¹ . Savoir que la solution de cette équation est $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$, avec A et B des constantes à déterminer grâce aux conditions initiales. Niveau 2 Connaître la forme canonique avec second membre et s'en servir pour obtenir facilement la position d'équilibre : $\ddot{x} + \omega_0^2 x = \omega_0^2 x_{\rm eq}$ Savoir déterminer les constantes d'intégration à partir des conditions initiales sur la vitesse et la position

Point « Maths » – Équation différentielle d'un oscillateur amorti

			Niveau 1
			Reconnaître l'équation différentielle d'un oscillateur amorti
			Écrire le polynôme caractéristique de l'équation différentielle et son discriminant
			Niveau 2
			Relier le signe du discriminant aux différents régimes de l'oscillateur amorti
			Savoir que la solution s'écrit $x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ avec r_1 et r_2 les racines du polynôme caractéristique
			Reconnnaître dans l'expression de la solution d'un oscillateur pseudo-périodique le terme correspondant à l'amortissement et celui correspondant aux oscillations
			Niveau 3
			Résoudre entièrement l'équation différentielle d'un oscillateur amorti dans le cas général
			Dans le cas d'un oscillateur pseudo-périodique, savoir que la solution physique doit être réelle, différencier les exponentielles réelles (amortissement) des exponentielles complexes (oscillations) lors du calcul et en déduire la forme de la solution.
			Chapitre 5 – Lois de Newton
			Niveau 1
			Savoir qu'un vecteur est un objet mathématique contenant des informations de direction, de sens et de norme, et peut être appliqué à de nombreux concepts physiques
			Être à l'aise avec les notations propres aux vecteurs en physique : différence entre \vec{v} , v et v_x
			Comprendre les concepts de <i>composante</i> d'un vecteur (v_x) , coordonnée d'un point (x) , et vecteur unitaire (\vec{u}_x) et différencier tous ces objets physiques
			Connaître les trois lois de Newton
			Connaître les expressions du poids et de la force de rappel d'un ressort
			Savoir projeter un vecteur sur deux axes
			Utiliser le PFD dans des cas simples : applications directes 1, 3, et 5
			Niveau 2
			Savoir que la puissance d'une force s'écrit $\mathcal{P} = \overrightarrow{F} \cdot \overrightarrow{v}$
			Savoir que le travail d'une force constante peut s'écrire $W = \overrightarrow{F} \cdot \overrightarrow{AB}$
			Savoir le travail est l'intégrale de la puissance dans le temps
			Savoir que pour une interaction conservative, à une dimension, $\vec{F} = -\frac{\mathrm{d}E_p}{\mathrm{d}x}\vec{u}_x$, et l'utiliser
_	_	_	pour déterminer une force à partir de l'expression de son énergie potentielle
			Connaitre les expressions des forces d'interaction gravitationnelle et électromagnétique
	Ш		Application directe 2, exercices 1, 2 et 4
			Niveau 3
			Savoir que le travail élémentaire d'une force s'écrit $\delta W = \overrightarrow{F} \cdot \overrightarrow{d\ell}$
			Lier travail et énergie potentielle
			Application directe 4, exercices 3 et 5

Chapitre 6 – Oscillations forcées

	Niveau 1
	Savoir obtenir l'équa diff par application du PFD au système masse-ressort horizontal
	Savoir qu'en complexe, dériver revient à multiplier l'amplitude complexe par $j\omega$
	Calculer une amplitude complexe lorsque l'équation différentielle complexe est donnée
	Exercice 2
	Niveau 2
	Comprendre le passage en complexe : signification de l'amplitude complexe (norme : amplitude réelle du mouvement ; argument : déphasage avec l'excitation)
	Exercices 1 et 4
	Niveau 3
	Comprendre la totalité de la résolution d'un oscillateur forcé : obtention de l'équation différentiel, passage en complexe, résolution
	Calculs liés à la résonance en amplitude et en vitesse
	Exercice 3
	Chapitre 7 – Ondes mécaniques
	(Niveau 1)
	Comprendre le concept d'onde progressive, savoir qu'une onde dépendant de $x-ct$ progresse dans le sens des x croissants (selon $+\vec{u}_x$)
	Savoir effectuer des dérivées partielles simples $(\cos(kx - \omega t) \text{ par exemple})$
	Savoir qu'une onde harmonique est sinusoïdale
	Comprendre la double périodicité pour les ondes harmoniques, les concepts de longueur d'onde et de période temporelle, et savoir que $\lambda=c$ T
	Connaître l'expression de la célérité d'une onde le long d'une corde $c=\sqrt{\frac{T}{\mu}}$
	Comprendre le concept d'onde stationnaire, visualiser les noeuds et les ventres
	Exercice 1
	Niveau 2
	Connaître la forme canonique de l'équation d'onde de d'Alembert à une dimension
	Savoir démontrer l'équation d'onde pour la corde vibrante en étant guidé
	Corde fixée en un point : se servir des conditions aux limites pour montrer l'existence de l'onde réfléchie dans le cas harmonique, et le caractère stationnaire de la solution
	Corde fixée aux deux extrémités : montrer l'apparition de modes propres de fréquences déterminées et multiple d'une fondamentale
	Exercices 2 et 3
	Niveau 3
	Mener la démonstration de l'équation d'onde de la corde vibrante de bout en bout, en connaissant les hypothèses permettant d'arriver à cette équation
	Comprendre l'analyse harmonique et l'utilisation des séries de Fourier
	Exercices 4, 5 et 6

Partie B - Thermodynamique

Chapitre 1 – Formes et transferts d'énergie

	Niveau 1
	Comprendre le concept d'énergie interne
	Savoir que les énergies internes d'un gaz parfait et d'une phase indilatable et incompressible ne dépendent que de leur température
	Savoir que $\Delta U = C_{\nu} \Delta T$ pour un GP et une PII
	Savoir que la température d'un thermostat peut être considérée comme constante
	Connaître les définitions d'un système ouvert, fermé ou isolé
	Savoir écrire $F = PS$
	Connaître l'équation d'état des gaz parfaits $PV = nRT$ et l'écrire en différents état du même système
	Faire la différence entre un <i>état</i> et une <i>transformation</i>
	Savoir ce que signifie les transformations isobare, isotherme, isochore, adiabatique
	Savoir écrire $\delta W = -P dV$
	Différencier chaleur et température
	Savoir qu'à puissance constante, $W = \mathcal{P}\Delta t$
	Exercices 1, 2, 3, 6 et 7
	Niveau 2
	Savoir différencier grandeurs intensives et extensives
	Savoir écrire $W = \int \mathcal{P} dt$
	Exercices 4 et 5
	Niveau 3
	Exercice 8
	Chapitre 2 – Conservation de l'énergie
	Niveau 1
	Appliquer le premier principe à un système d'énergie mécanique constante entre deux états
	Écrire le premier principe et calculer le travail échangé lors de transformations isochore, isobare, adiabatique
	Exercices 10 et 11 (sans les transformations isothermes)
	Niveau 2
	Appliquer le premier principe dans tous les cas, y compris si l'énergie mécanique du système varie
	Calculer le travail échangé lors d'une transformation isotherme
	Exercices 9, 10, 11 et 13
	Niveau 3
	Exercice 12

Chapitre 3 – Bilans enthalpiques

		Niveau 1
		Connaître la définition de l'enthalpie $H = U + PV$
		Connaître la relation de Mayer $C_p = C_v + nR$
		Savoir que pour un GP et une PII $\Delta H = C_p \Delta T$
		Savoir que pour une transformation isobare $Q = \Delta H = C_p \Delta T$
		Savoir que pour une transformation isochore $Q = \Delta U = C_{\nu} \Delta T$
		Savoir que pour une phase condensée, $\Delta V = 0$, $\Delta U = \Delta H$ et $C_p = C_v$
		Connaître les trois états de la matière et les noms des différents changements d'état
		Savoir qu'un changement d'état se fait à température et pression constante
		Applications directes du cours (sauf la dernière) ; exercice 1
		Niveau 2
		Savoir que pour une transformation monobare le premier principe s'écrit $\Delta H = W_{\text{autres}} + Q$, avec W_{autres} le travail autre que celui des forces de pression
		Savoir démontrer la relation de Mayer
		Savoir écrire $\Delta H = mL_{\text{chgt}}$ lors d'un changement d'état
		Repérer sur un diagramme les zones correspondant à un gaz et aux phases condensées
		Savoir écrire $\Delta H = \xi \Delta_r H^\circ$ lors d'une réaction chimique
		Savoir qu'un $\Delta_r H^\circ$ < 0 correspond à une réaction exothermique
		Dernière application du cours (température de flamme) ; exercices 2 et 4
		Niveau 3
		Savoir tracer un diagramme (P,T) représentant les trois états de la matière, placer le point critique et le point triple
		Exercices 3, 5 et 6
		Chapitre 4 - Second principe Niveau 1
		Savoir que l'entropie est une grandeur extensive mesurant le désordre d'un système
		Savoir citer les causes d'irréversibilité classiques
		Connaître la loi de Laplace PV^{γ} = cste et ses <i>trois</i> conditions d'application
Ш	Ш	Savoir retrouver les autres formes de la loi de Laplace à partir de l'EDP
		(Niveau 2)
		Savoir écrire et appliquer le second principe
		Comprendre la différence entre égalité du premier principe et inégalité du second principe
		Exercices 1 et 3
		Niveau 3
		Retrouver la variation d'entropie d'un gaz parfait
		Exercice 2

Chapitre 5 – Machines thermiques

	Niveau 1
	Savoir tracer le schéma de principe d'une machine thermique ditherme et préciser le sens des échanges pour un fonctionnement moteur ou un fonctionnement récepteur
	Savoir que l'efficacité correspond au quotient de l'énergie utile par l'énergie « coûteuse » fournie au système. L'exprimer pour un moteur, un réfrigérateur et une pompe à chaleur
	Savoir que sur un cycle, les variations de toutes les variables d'état sont nulles, et notamment que $\Delta U = \Delta S = 0$
	Savoir qu'un cycle de Carnot est constitué de deux transformations isothermes et de deux transformations isentropiques
	Savoir que le cycle de Carnot est le cycle d'efficacité maximale, jamais atteinte en réalité
	Repérer sur un cycle les échanges sous forme de travail, les échanges de chaleur avec la source chaude, et avec la source froide
	Exercices 1 et 2
	Niveau 2
	Effectuer un bilan énergétique et un bilan entropique sur un cycle entier dans le cas d'un cycle de Carnot pour obtenir l'expression de l'efficacité maximale en fonction des températures des sources chaude et froide
	Démontrer les énoncés de Clausius et de Thomson du second principe
	Calculer l'efficacité d'un cycle quelconque décrit dans un énoncé
	Utiliser le premier principe en système ouvert dans des cas simples, et notamment savoir qu'en l'absence de partie mobile, une transformation adiabatique subie par un système est isenthalpique
	Connaître les notions de liquide saturant et de vapeur saturante
	Exercices 4, 7 et 8
	Niveau 3
	Utilisation du premier principe en système ouvert sur l'ensemble d'un cycle frigorifique
	Savoir tracer la courbe de rosée et la courbe d'ébullition en (V, P)
	Connaître et appliquer le théorème des moments
	Exercices 3, 5 et 6

Partie C - Mécanique des fluides

Chapitre 1 - Statique des fluides

	(Niveau 1)
	Comprendre qu'un champ scalaire associe un <i>nombre</i> à chaque point de l'espace
	Savoir écrire la relation fondamentale de la statique des fluides si seul le poids s'applique :
	$\frac{dP}{dz} = +\rho g \vec{u}_z \text{ (axe } z \text{ descendant) ou } \frac{dP}{dz} = -\rho g \vec{u}_z \text{ (axe } z \text{ montant)}$
	Savoir résoudre la RFSF dans le cas d'un liquide incompressible (ρ constant)
	Exercices 1, 3 et 4
	Niveau 2
	Savoir résoudre la RFSF dans le cas de l'atmosphère isotherme
	Savoir comment est défini un vecteur surface et écrire la force en fonction de ce vecteur
	surface
	Comprendre le concept de gradient d'un champ scalaire
	Exercices 2, 5 et 6
	Niveau 3
	Savoir retrouver l'équivalent volumique des forces de pression pour une particule fluide cu- bique
	Savoir écrire et démontrer la RFSF dans le cas général : $\overrightarrow{f_v} = \overrightarrow{\text{grad}} P$
	Exercice 7
	Chapitre 2 – Description d'écoulement et opérateurs vectoriels
	Niveau 1 Chapitre 2 - Description d'écoulement et opérateurs vectoriels Niveau 1
	Niveau 1
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation Savoir qu'un flux se calcule <i>à travers une surface</i> et une circulation <i>le long d'un coutour</i> .
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation Savoir qu'un flux se calcule <i>à travers une surface</i> et une circulation <i>le long d'un coutour</i> . Connaître la définition d'une ligne de courant
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation Savoir qu'un flux se calcule <i>à travers une surface</i> et une circulation <i>le long d'un coutour</i> . Connaître la définition d'une ligne de courant Niveau 2
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation Savoir qu'un flux se calcule à travers une surface et une circulation le long d'un coutour. Connaître la définition d'une ligne de courant Niveau 2 Comprendre la façon dont sont définis les repères cylindrique et sphérique
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation Savoir qu'un flux se calcule à <i>travers une surface</i> et une circulation <i>le long d'un coutour</i> . Connaître la définition d'une ligne de courant Niveau 2 Comprendre la façon dont sont définis les repères cylindrique et sphérique Avoir une première idée de la signification de la divergence et du rotationnel d'un champ
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation Savoir qu'un flux se calcule à <i>travers une surface</i> et une circulation <i>le long d'un coutour</i> . Connaître la définition d'une ligne de courant Niveau 2 Comprendre la façon dont sont définis les repères cylindrique et sphérique Avoir une première idée de la signification de la divergence et du rotationnel d'un champ vectoriel Savoir qu'en mécanique des fluides, une divergence positive représente une source de fluide
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation Savoir qu'un flux se calcule à <i>travers une surface</i> et une circulation <i>le long d'un coutour</i> . Connaître la définition d'une ligne de courant Niveau 2 Comprendre la façon dont sont définis les repères cylindrique et sphérique Avoir une première idée de la signification de la divergence et du rotationnel d'un champ vectoriel Savoir qu'en mécanique des fluides, une divergence positive représente une source de fluide et une divergence négative représente un puits
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation Savoir qu'un flux se calcule à <i>travers une surface</i> et une circulation <i>le long d'un coutour</i> . Connaître la définition d'une ligne de courant Niveau 2 Comprendre la façon dont sont définis les repères cylindrique et sphérique Avoir une première idée de la signification de la divergence et du rotationnel d'un champ vectoriel Savoir qu'en mécanique des fluides, une divergence positive représente une source de fluide et une divergence négative représente un puits Expression du flux d'un vecteur à travers une surface
	Niveau 1 Comprendre qu'un champ vectoriel associe un <i>vecteur</i> à chaque point de l'espace Commencer à faire connaissance avec les concepts de flux et de circulation Savoir qu'un flux se calcule à <i>travers une surface</i> et une circulation <i>le long d'un coutour</i> . Connaître la définition d'une ligne de courant Niveau 2 Comprendre la façon dont sont définis les repères cylindrique et sphérique Avoir une première idée de la signification de la divergence et du rotationnel d'un champ vectoriel Savoir qu'en mécanique des fluides, une divergence positive représente une source de fluide et une divergence négative représente un puits Expression du flux d'un vecteur à travers une surface Expression de la circulation d'un vecteur le long d'un contour

Chapitre 3 – Étude d'un fluide en mouvement : Bernoulli

	Niveau 1
	Savoir que dans la plupart des situations étudiées, le débit volumique se conserve, et s'écrit $D_v = v \times S$ avec S la section d'un tuyau
	Connaître la relation entre débit massique et débit volumique : $D_m = \rho D_v$
	Connaître la relation de Bernoulli
	Savoir résoudre un problème simple de mécanique des fluides en écrivant l'équation de Bernoulli et la conservation du débit
	Exercices 1, 4 et 8
	Niveau 2
	Savoir que le débit à travers une surface est le flux du vecteur vitesse, c'est-à-dire $D_v = \iint_S \vec{v} \cdot \vec{dS}$
	pour une distribution des vitesses et une surface S quelconques, avec \overrightarrow{dS} un vecteur surface élémentaire balayant la totalité de la surface S
	Connaître l'équation de conservation de la masse à une dimension
	Connaître les hypothèses permettant d'écrire Bernoulli : écoulements parfaits et stationnaires d'un liquide homogène (ρ constant), sans source ni puits
	Connaître la relation de Bernoulli et savoir ajouter une pompe ou une turbine, ainsi que les pertes de charge
	Exercices 2, 4, 5, 6 et début de l'exercice 3 (3.1 et 3.2)
	Niveau 3
	Démontrer l'équation de continuité (ou de conservation de la masse) à une dimension en faisant un bilan de matière sur une tranche de canalisation dans le cas général
	Comprendre la différence entre pertes de charge singulière et régulière
	Exercices 7, 9 et exercice 3 en entier

Partie D - Conduction thermique

	Niveau 1
	Savoir qu'en régime permanent le flux de chaleur est uniforme dans un barreau calorifugé
	Obtenir l'équation différentielle à résoudre à partir de l'équation de la chaleur, en régime permanent
	Résoudre cette équation différentielle en utilisant les conditions aux limites
	Connaître la loi de Fourier à une dimension $\overrightarrow{j_{th}} = -\lambda \frac{dT}{dx} \overrightarrow{u_x}$
	Savoir que le flux thermique est la quantité de chaleur traversant une surface par unité de temps
	Savoir que $\Phi_{\text{th}} = j_{\text{th}} \times S$
	Savoir que $R_{\text{th}} = \frac{e}{\lambda S}$, et qu'il faut ajouter les résistances thermiques lorsque différentes couches de matériaux sont superposées
	Exercice 1
	Niveau 2
	Démontrer l'équation de la chaleur à 1D en régime permanent sur une tranche de barreau (en écrivant un bilan de puissance sur la tranche)
	Connaître l'expression générale de la loi de Fourier $\overrightarrow{j_{\text{th}}} = -\lambda \overrightarrow{\text{grad}} T$
	Savoir que le flux thermique est le flux du vecteur densité de flux thermique : $\Phi_{th} = \iint \overrightarrow{j_{th}} \cdot \overrightarrow{dS}$
	Savoir retrouver l'expression de la résistance thermique grâce à l'analogie avec l'électricité
	Savoir utiliser la loi de Newton pour traiter les échanges conducto-convectifs
	Exercices 2, 3, 4 et 7
	Niveau 3
	Démontrer l'équation de la chaleur dans le cas général
	Résoudre l'équation de la chaleur dans le cas du régime sinusoïdal établi
	Exercices 5, 6 et 8

Partie E – Électromagnétisme

Chapitre 1 – Électrostatique

	Niveau I
	Concept de distributions continues de charges : $Q = \rho V$; $Q = \sigma S$; $Q = \lambda L$.
	Savoir que $\overrightarrow{F} = q \overrightarrow{E}$
	Savoir que les invariances de la distribution de charges permettent de déterminer de quelles coordonnées dépend \overrightarrow{E}
	Savoir que les symétries de la distrib. de charges permettent de déterminer la direction de \overrightarrow{E}
	Savoir que dans les situations étudiées à symétrie cylindrique et sphérique, généralement le champ électrique est radial et ne dépend que de $\it r$.
	Savoir écrire le théorème de Gauss, liant flux de \overrightarrow{E} à travers une surface fermée et les charges électriques contenues dans le volume délimité par cette surface.
	Applications directes : champs créés par une charge ponctuelle, par un fil chargé et par une sphère chargée en surface ; exercices 2 et 4
	Niveau 2
	Connaître la loi de Coulomb (expression de la force d'interaction électrostatique)
	Citer le principe de superposition
	Savoir que le champ électrique est compris dans les plans de symétrie de la distribution de charge, et que deux plans de symétrie passant par le point M permettent de déterminer la direction de \overrightarrow{E}
	Connaître les topologies classiques de champ électrique et la forme des lignes de champ
	Savoir que le champ électrique est continu, sauf à la traversée d'une surface chargée
	Savoir que $\overrightarrow{E} = -\overrightarrow{\text{grad}} V$ et calculer le potentiel d'une distribution de charge classique
	Savoir que la circulation de \overrightarrow{E} entre deux points correspond à la différence de potentiel entre ces deux points : $\int_A^B \overrightarrow{E} \cdot \overrightarrow{d\ell} = V_A - V_B$
	Savoir que les surfaces équipotentielles sont orthogonales aux lignes de champ et que le champ est orienté vers les potentiels décroissants
	Savoir que le potentiel est continu, sauf à la traversée d'une charge ponctuelle ou d'une ligne chargée
	Applications directes : cylindre chargé en surface et en volume, sphère chargée en volume ; exercices 1 et 5
	Niveau 3
	Connaître la forme locale du théorème de Gauss (équation de Maxwell-Gauss)
	Connaître l'équation de Maxwell-Faraday en régime stationnaire
	Montrer que les surfaces équipotentielles sont orthogonales aux lignes de champ, et que le champ est orienté dans le sens des potentiels décroissants
	Connaître la relation de continuité du champ électrique à la traversée d'une surface chargée
	Application directe : champ créé par un plan infini chargé en surface ; exercices 3 et 6

Chapitre 2 – Conducteurs et condensateurs

		(Niveau 1)
		Savoir qu'un conducteur possède des charges mobiles (électrons pour un métal, cas le plus fréquents, ions pour une solution ionique
		Savoir que dans un conducteur en <i>équilibre électrostatique</i> , les charges sont immobiles
		Savoir que dans un conducteur en équilibre électrostatique le champ \overrightarrow{E} est nul
		Savoir que le potentiel électrique est constant dans un conducteur en équilibre électrostatique
		Connaître la définition de la capacité d'un condensateur $Q = CU$
		Savoir que les effets de bord sont négligeables pour un condensateur plan si son épaisseur est négligeable devant les autres dimensions des armatures
		Connaître et savoir retrouver la capacité d'un condensateur plan $C=\frac{\epsilon_0S}{e}$, connaissant l'expression du champ électrique entre les armatures
		Exercices: question 1.1 et 1.2, exercice 3
		Niveau 2
		Savoir que dans un équilibre électrostatique il n'y a pas de charge volumique, et que toutes les charges se répartissent en surface
		Connaître le théorème de Coulomb donnant le champ électrique à l'extérieur d'un conducteur $\overrightarrow{E} = \frac{\sigma}{\epsilon_0} \overrightarrow{n_{\rm ext}}$
		Obtenir l'équation différentielle régissant l'évolution d'un circuit RC
		Connaître l'énergie stockée par un condensateur $E = \frac{1}{2}CU^2$
		Savoir que le moyen le plus direct de calculer la capacité d'un condensateur est de calculer la circulation du champ \overrightarrow{E} entre les armatures
		Exercices 1, 2, 4
		Niveau 3
		Être capable de démontrer toutes les propriétés des conducteurs en équilibre électrostatique
		Savoir qu'un condensateur est constitué de deux conducteurs en influence totale l'un sur l'autre, et que les charges des deux armatures sont donc opposées
		Connaître l'expression de l'énergie volumique associée au champ électrique
		Calculer la capacité de condensateurs sphérique et cylindrique
П	П	Evergice 5

Chapitre 3 – Conduction du courant électrique

	Niveau 1
	Savoir que le courant électrique correspond à un déplacement de particules chargées
	Savoir que l'intensité correspond à un débit de charge (charge traversant une surface – par exemple la section d'un conducteur – par unité de temps)
	Savoir que dans la plupart des cas, sur une section S de conducteur, $I=jS$, avec j la norme du vecteur densité de courant
	Connaître les loids de Kirchhoff (loi des nœuds et loi des mailles)
	Connaître la loi d'Ohm $U=RI$ et la loi d'Ohm locale $\vec{j}=\sigma \overrightarrow{E}$ avec σ la conductivité du matériau
	Savoir que la conductivité σ d'un matériau est l'inverse de sa résistivité ρ
	Savoir que pour un tronçon de conducteur ohmique $R = \frac{\rho \ell}{S} = \frac{\ell}{\sigma S}$
	Savoir que dans l'approximation des régimes quasi-stationnaires les lois classiques de l'électrocinétique restent valables même si l'on n'est pas en régime permanent
	Savoir que la puissance électrique d'un dipôle l'écrit $\mathcal{P} = UI$
	Exercices 3 et 5
	Niveau 2
	Connaître l'expression du vecteur densité de courant $\vec{j}=nq\vec{v}$, et savoir que l'intensité est égale au flux de ce vecteur
	Connaître l'équation locale de conservation de la charge, et savoir qu'en régime permanent on peut en déduire que le flux de \vec{j} est conservé
	Savoir refaire l'application de cours permettant de calculer la vitesse de dérive des électrons dans un conducteur parcouru par un courant
	Savoir retrouver $R = \frac{\rho \ell}{S}$ pour un tronçon de conducteur ohmique
	Savoir que l'approximation des régimes quasi-stationnaires est valable si la taille du circuit est négligeable devant la longueur d'onde de l'onde électromagnétique correspondante
	Savoir qu'en convention récepteur, si $\mathcal{P} > 0$ alors le dipôle est récepteur (puissance effectivement reçue), et si $\mathcal{P} < 0$ alors le dipôle est générateur (puissance effectivement fournie)
	Exercices 1 et 4
	Niveau 3
	Retrouver l'expression du vecteur densité de courant $\vec{j} = n q \vec{v}$
	Démontrer l'équation de conservation de la charge à une dimension
	Démontrer la loi d'Ohm macroscopique à partir de la loi d'Ohm locale
	Démontrer que $\mathcal{P}=UI$ en écrivant l'énergie reçue par les porteurs de charge de la part du champ électrique
	Exercices 2 et 6

Chapitre 4 – Magnétostatique

	(Niveau 1)
	Savoir qu'un champ magnétique est créé par des courants électriques
	Savoir que le champ magnétique créé par un fil rectiligne est orthoradial
	Savoir que le champ magnétique terrestre est de l'ordre de $5 \times 10^{-5} \mathrm{T}$
	Savoir que le champ magnétique est perpendiculaire aux plans de symétrie pour la distribution de courant
	Savoir écrire le théorème d'Ampère sur un contour <i>orienté</i> , reliant circulation de \overrightarrow{B} et intensité traversant le contour
	Savoir que le signe de l'intensité traversant le contour d'Ampère dépend du sens choisi pour le contour
	Savoir calculer le champ magnétique créé par un fil rectiligne infini parcouru par une intensité I : $\overrightarrow{B} = \frac{\mu_0 I}{2 \pi r} \overrightarrow{u}_{\theta}$
	Exercices 1, 5, 8 et 9
	Niveau 2
	Connaître l'expression de la force de Lorentz $\overrightarrow{F} = q \left(\overrightarrow{E} + \overrightarrow{v} \wedge \overrightarrow{B} \right)$
	Comprendre toutes les étapes de l'application du théorème d'Ampère dans le cas du champ créé par un fil infini
	Savoir calculer le champ magnétique créé à l'intérieur d'un câble non filiforme
	Savoir que le champ magnétique est continu sauf à la traversée d'une surface parcourue par des courants surfaciques
	Savoir que le champ \overrightarrow{B} est à flux conservatif (absence de « charges magnétiques »)
	Connaître la topologie du champ magnétique (formes des lignes de champ notamment) pour les distributions de courant les plus classiques
	Exercices 2, 3 et 7
	Niveau 3
	Être à l'aise avec la notion de courants surfaciques
	Connaître la relation de passage pour le champ magnétique à la traversée d'un plan parcouru par des courants surfaciques
	Savoir calculer le champ créé par un solénoïde droit, sachant que le champ à l'infini est nul
	Exercices 4 et 6

Chapitre 5 - Lois de l'induction

	(Niveau 1)
	Savoir que les phénomènes inductifs apparaissent lorsqu'il y a des <i>variations de flux</i> de \overrightarrow{B}
	Être capable d'interpréter les expériences de Faraday vues en cours
	Connaître la loi de Faraday $e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$
	Savoir calculer le flux de \overrightarrow{B} dans les cas simples (\overrightarrow{B} uniforme et orthogonal à la surface considérée) : $\Phi = \pm B S$, le signe étant déterminée par l' <i>orientation choisie</i> pour le circuit
	Savoir que la force électro-motrice est une tension
	Questions 2.1 et 2.2
	Niveau 2
	Savoir énoncer correctement la loi de modération de Lenz
	Savoir utiliser la loi de Lenz pour prédire sans calcul quel va être le sens des phénomènes inductifs
	Exercices 1, 3 et 7
	Niveau 3
	Savoir calculer un flux de \overrightarrow{B} dans le cas où \overrightarrow{B} est non uniforme
	Connaître l'expression de Maxwell-Faraday et savoir l'intégrer pour retrouver l'équation de Faraday
	Question 2.3
	Chapitre 6 - Circuit fixe dans un champ variable
	Niveau 1
	Savoir que l'inductance est définie par $\Phi = LI$
	Savoir calculer l'inductance d'un solénoïde droit (application directe du cours)
	Savoir obtenir l'équation différentielle régissant l'évolution d'un circuit RL
	Questions 4.1 et 4.2
	Niveau 2
	Comprendre le phénomène d'auto-induction et l'apparition d'une force <i>contre</i> -électromotrice dans une bobine
	Exercice 4
	Niveau 3
	Savoir calculer l'inductance d'un solénoïde torique
	Notion de mutuelle inductance
	Expression de l'énergie volumique associée au champ magnétique
	Exercices 5 et 6

Chapitre 7 - Circuit mobile dans un champ stationnaire

	Niveau 1
	Savoir que les effets de l'induction s'opposent aux causes qui les ont créés
	Traiter le cas des rails de Laplace pour les applications vues en cours (rail lancé avec une vitesse initiale et rail en présence d'un générateur)
	Savoir que l'équation électrique s'obtient par la loi des mailles appliquée au schéma électrique équivalent (sans oublier de rajouter e)
	Savoir que l'équation mécanique s'obtient à partir du PFD (sans oublier la force de Laplace)
	Niveau 2
	Pouvoir décrire avant de faire les calculs la cascade de phénomènes se produisant dans les différentes situations des rails de Laplace
	Obtenir les équations électrique et mécanique
	Savoir que le bilan de puissance s'obtient en multipliant l'équation électrique par i et l'équation mécanique par v
	Faire le TD en entier
	Niveau 3
	Être capable d'interpréter les bilans de puissance
	Traiter le cas du haut-parleur électrodynamique

Chapitre 8 – Ondes électromagnétiques

	Niveau 1
	Connaître les équations de Maxwell dans le vide
	Savoir que l'équation d'onde s'obtient en calculant $\overrightarrow{rot}(\overrightarrow{rot}\overrightarrow{E})$ et $\overrightarrow{rot}(\overrightarrow{rot}\overrightarrow{B})$ de deux manières différentes
	Connaître la structure d'une onde plane : \overrightarrow{E} et \overrightarrow{B} perpendiculaires à la direction de propagation et perpendiculaires entre eux
	Savoir déterminer la direction et le sens de propagation de l'onde, \overrightarrow{E} étant donné
	Savoir que le vecteur de Poynting caractérise le transport d'énergie associée à l'onde électromagnétique
	Comprendre la double périodicité des ondes progressives et savoir que $\lambda=cT$
	Connaître le domaine de longueurs d'onde correspondant à la lumière visible (400 – 800 nm)
	Niveau 2
	Connaître les équations de Maxwell dans le cas général
	Savoir en déduire les équations d'onde des champs électrique et magnétique
	Connaître la relation de structure de l'onde électromagnétique $\overrightarrow{B} = \frac{\overrightarrow{n} \wedge \overrightarrow{E}}{c}$
	Connaître l'expression du vecteur de Poynting $\overrightarrow{\Pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0}$
	Savoir que le flux du vecteur de Poynting à travers une surface correspond à la puissance rayonnée à travers la surface
	Savoir que lors de la réflexion d'une onde sur un métal, on peut considérer que $\overrightarrow{E} = \overrightarrow{B} = 0$
	Savoir aussi qu'il n'y a pas de charge ni de courants volumiques dans le métal
	Savoir exploiter les relations de continuité pour déterminer les champs au voisinage immédiat du métal
	Niveau 3
	Savoir jongler avec les opérateurs vectoriels
	Savoir passer des formes locales des équations de Maxwell aux formes intégrales, en utilisant les théorèmes de Stokes et de Green-Ostrogradski
	Démontrer la relation de structure de l'onde électromagnétique
	Traiter entièrement la réflexion des ondes électromagnétiques sur un conducteur parfait, et déterminer notamment l'expression des courants surfaciques présents à la surface du métal

Chapitre 9 – Interférences

	Niveau 1
	Savoir que deux ondes ne peuvent interférer que dans certaines conditions : même polarisation, même source lumineuse, chemin optique parcouru peu différent
	Savoir que les récepteurs de lumière ne sont sensibles qu'à la moyenne de l'intensité lumineuse
	Savoir que deux ondes en phase vont interférer de manière constructive, et que deux ondes en opposition de phase vont interférer de manière destructive
	Connaître le dispositif des fentes d'Young
	Exercice 2
	Niveau 2
	Savoir calculer la différence de marche entre les deux rayons dans le cas des fentes d'Young
	Savoir que des interférences constructives se produisent si la différence de marche corres-
	pond à un nombre entier de longueurs d'onde et qu'elles sont destructives si $\delta = \left(n + \frac{1}{2}\right)\lambda$
	Exercices 1 (sauf 1.7) et 3
	Niveau 3
	Savoir calculer l'interfrange dans le cas des fentes d'Young
	Ouestion 1.7