Exercice 1. On note lorsque cela est défini $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$ et $\eta(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^x}$.

- 1. Montrer que la fonction η est bien définie sur \mathbb{R}_+^* .
- 2. Montrer que η est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et en déduire les variations de η .

 Indication : Pour montrer que la suite $\left(\frac{\ln(n)}{n^x}\right)_n$ est décroissante à partir d'un certain rang, on pourra montrer que la fonction $\phi: t \mapsto \frac{\ln(t)}{t^x}$ est décroissante sur un voisinage de l'infini.
- 3. Calculer la limite en $+\infty$ de η .
- 4. Montrer que $\forall x > 1$, $\zeta(x) + \eta(x) = 2^{1-x}\zeta(x)$.
- 5. En admettant $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = -\ln(2)$, en déduire un équivalent de ζ au voisinage de 1^+ .