Programme de colles, semaine du 03-01

I) Questions de cours

- Énoncer un des cinq théorèmes de convergence dominée (cf ci-dessous)
- Montrer que l'une des normes $\|\cdot\|_1$, $\|\cdot\|_{\infty}$ est une norme sur \mathbb{R}^n ou $\mathcal{C}^0([a,b],\mathbb{R})$
- Montrer que B(a, r) est convexe
- Donner la définition d'une partie ouverte
- Montrer que $GL_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$

II) Suites, séries de fonctions et Intégrales à paramètres : convergence dominée

1) Suite de fonctions

Théorème. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle J. On suppose

- (f_n) CVS vers f sur J
- f_n et f sont C^0 p.m. sur J.
- il existe $\varphi: J \to \mathbb{R} \ \mathcal{C}^0$ p.m. et intégrable telle que

$$\forall n \in \mathbb{N}, \forall t \in J, |f_n(t)| \leq \varphi(t).$$

Alors (les fonctions f_n et f sont intégrables et)

$$\int_{I} f_{n}(t)dt \xrightarrow[n \to +\infty]{} \int_{I} f(t)dt$$

2) Intégrales à paramètres

a) Continuité

Théorème. On considère $g: I \times J \to \mathbb{K}$ et on considère

$$f(x) = \int_{J} g(x, t)dt.$$

On suppose

- $\forall x \in I, t \mapsto g(x, t) \text{ est } C^0 \text{ p.m.}$
- $\forall t \in J, x \mapsto g(x, t) \text{ est } \mathcal{C}^0$
- $\forall x \in I, \forall t \in J, |g(x,t)| \leq \varphi(t)$, où φ est \mathcal{C}^0 p.m. et intégrable

Alors f est (bien définie sur J et) continue sur J.

b) Limite

Théorème. On considère $g: I \times J \to \mathbb{K}$, $f(x) = \int_J g(x,t)dt$, et a une extrémité de I. On suppose

- $\forall x \in I$, $t \mapsto g(x, t)$ est C^0 p.m.
- $\forall t \in J$, $g(x,t) \xrightarrow[x \to a]{} h(t)$, où h est une fonction C^0 p.m.
- $\forall x \in I, \forall t \in J, |g(x,t)| \leq \varphi(t)$, où φ est \mathcal{C}^0 p.m. et intégrable

Alors (h est intégrable et)

$$\int_{J} g(x,t)dt \xrightarrow{x \to a^{\flat}} \int_{J} h(t)dt.$$

c) Dérivabilité

Théorème. On considère $g:I\times J\to \mathbb{K}$, $f(x)=\int_I g(x,t)dt$, et a une extrémité de I. On suppose

• $\forall x \in I$, $t \mapsto g(x,t)$ est C^0 p.m et intégrable

- $\forall t \in J, x \mapsto g(x,t) \text{ est } C^1, \text{ de dérivée } x \mapsto \frac{\partial g}{\partial x}(x,t)$ et $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est \mathcal{C}^0 p.m.
- $\forall x \in I, \forall t \in J, \left| \frac{\partial g}{\partial x}(x,t) \right| \leq \varphi(t)$, où φ est \mathcal{C}^0 p.m. et intégrable.

Alors f est (bien définie et) C^1 sur J, de dérivée

$$f'(x) = \int_{J} \frac{\partial g}{\partial x}(x, t) dt.$$

Séries de fonctions

Théorème. On considère $\sum f_n$ une série de fonctions sur J. On suppose

- $\sum f_n$ CVS vers une fonction $f \mathcal{C}^0$ p.m.
- f_n sont C^0 p.m. et intégrables.

• $\sum \int_J |f_n|$ converge. Alors $f=\sum_{n=0}^{+\infty} f_n$ est intégrable sur J et

$$\int_{J} \sum_{n=0}^{+\infty} f_n(t)dt = \sum_{n=0}^{+\infty} \int_{J} f_n(t)dt.$$

Espaces vectoriels normés et topologie III)

Norme sur un espace vectoriel

- définition
- · Normes usuelles
 - $\triangleright \|\cdot\|_1, \|\cdot\|_{\infty} \operatorname{sur} \mathbb{K}^n$
 - $\triangleright \|\cdot\|_1, \|\cdot\|_{\infty} \operatorname{sur} C^0([a, b], \mathbb{R})$
 - $\,\,\vartriangleright\,\,$ Normes euclidienne $\|\cdot\|_2$ sur \mathbb{R}^n , sur $\mathcal{C}^0([a,b],\mathbb{R})$
 - \triangleright Normes sur $\mathcal{M}_n(\mathbb{R})$
- Sur une espace de fonctions, $\|\cdot\|_{\infty}$ est la norme de la convergence uniforme

2) Distance et topologie

- d(x,y) = ||x y||
- Boule ouverte B(a,r) et boule fermée $\overline{B(a,r)}$ dans un evn
- Partie bornée
- Partie convexe
 - ▷ Les boules et les sous-espaces vectoriels sont convexes
- Partie ouverte, partie fermées

Suites dans un evn

- $x_n \to x \text{ si } ||x_n x|| 0$
- En dimension finie, la convergence ne dépend pas de la norme
- Caractérisation séquentielle des fermés :
 - $F \subset E$ est fermé ssi pour toute suite $(x_n) \in F^{\mathbb{N}}$, si $x_n \to x$, alors $x \in F$
- En dimension finie, le caractère fermé/ouvert ne dépend pas de la norme.
- Tout sous-espace vectoriel de dimension finie est fermé

4) Continuité

- $f: E \to F$ est continue si pour tout $a \in E$, $f(x) \xrightarrow[x \to a]{} f(a)$.
 - ightharpoonup En particulier, si $x_n \to \ell$, $f(x_n) \to f(\ell)$
- Fonctions lipschitziennes
 - $\, \triangleright \, \, lipschitzienne \Rightarrow continue \,$
- Applications linéaires
 - ⊳ En dimension finie, toute application linéaire est lipschitzienne

 - $\,\,\vartriangleright\,$ Applications : si $A_n\to A,\,A_nB\to AB,$ si $P_n\to P,\,P_n(1)\to P(1)$
- Continuité d'une application bilinéaire, de $A\mapsto A^p$, du déterminant
- Si $f:E \to \mathbb{R}$ est continue
 - $\, \triangleright \, \left\{ x \in E \mid f(x) = 0 \right\} \, \mathrm{est} \, \mathrm{ferm} \acute{\mathrm{e}}$
 - $\triangleright \{x \in E \mid f(x) \ge 0\}$ est fermé
 - $\{x \in E \mid f(x) > 0\} \text{ est ouvert}$